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Abstract. A new way to measure ∆Γ
Γ

in the B0
s − B̄0

s System based on a comparison of the measured B0
s

and B0
d lifetimes is introduced. This allows to use data from all the experiments simultaniously. An upper

limit of ∆Γ
Γ

≤ 0.24 at 95 % CL can be given. This is below the theoretical upper limit of 0.27.

1 Introduction

As in the K0 −K̄0 system, there is a mixing of the flavour
states B0 and B̄0, which results in the new states BS and
BL with the (probably) different width ΓS und ΓL. For
B0

d it is expected that ∆Γ
Γ ≈ 0.0, while in the B0

s − B̄0
s

system ∆Γ
Γ ≈ 0.17 is expected [1]. In this paper, only the

B0
s − B̄0

s System is considered.
For a decay into a final state f we set

Γf =

(
Γf,11 Γf,12

Γf,21 Γf,22

)

=

(
< B0|f >< f |B0 > < B0|f >< f |B̄0 >

< B̄0|f >< f |B0 > < B̄0|f >< f |B̄0 >

)

Obviously Γf,21 = Γ ∗
f,12.

If CP-violation is neglected and the initial state is not
tagged, the following time-dependence for the decay rates
is obtained:

PB0
sB̄0

s→f (t) =
1
2
(e−ΓLt + e−ΓSt) (Γf,11 + Γf,22)

−(e−ΓSt − e−ΓLt) ReΓf,12

=
(

1
2
(Γf,11 + Γf,22) − ReΓf,12

)
e−ΓSt

+
(

1
2
(Γf,11 + Γf,22) + ReΓf,12

)
e−ΓLt

= A e−ΓSt + B e−ΓLt

where Γ = 1
2 (ΓS + ΓL) and A and B are defined as the

short- and longlived amplitudes.
Most of the experiments measuring the B0

s -lifetime do
completely neglect ∆Γ , and due to that, they only fit with
one exponential function. This results in the following de-
pendence of the measured lifetime on ∆Γ

τB0
s

=
(A 1

Γ 2
S

+ B 1
Γ 2

L

)

(A 1
ΓS

+ B 1
ΓL

)

Four different cases have to be considered :

– CP-modes: In the case of a decay into a CP-eigenstate,
either A or B is 0, that means Γ = ΓS or Γ = ΓL. This
provides a very easy and clean way to measure ∆Γ

Γ , but
the main drawback is the very low statistics due to the
small branching ratios.

– Totally inclusive modes: In these modes A = Γ − ∆Γ
and B = Γ + ∆Γ .

– Semileptonic modes: In this case Γf,11 = Γf,22 = Γsl

and Γf,12 = Γf,21 = 0, so A=B and the result simplifies
to

τB0
s

=
1
Γ

1 + (∆Γ
2Γ )2

1 − (∆Γ
2Γ )2

For small ∆Γ this leads to

τB0
s

≈ 1
Γ

[
1 + 2

(
∆Γ

2Γ

)2
]

If ∆Γ increases, the measured lifetime also will. The
increase is quadratic to lowest order. This is only true
for A=B. Theoretical calculations imply that Γ = ΓB0

d

to an accuracy of about 1% [1]. Using this, ∆Γ can be
calculated as a function of the measured B0

d and B0
s

lifetimes

∆Γ

Γ
= 2

√√√√(τB0
s

τB0
d

− 1

)
/

(
1 +

τB0
s

τB0
d

)

Please note that τB0
s

should always be larger than τB0
d
.

– Other modes: In the general case, e.g for partially in-
clusive modes like DsX, the amplitudes are not known
with great precision. This is a problem, because the
lifetime-shift is now linear in ∆Γ

2Γ :

τB0
s

=
(A 1

Γ 2
S

+ B 1
Γ 2

L

)

(A 1
ΓS

+ B 1
ΓL

)
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Fig. 1. Expected B0
s lifetime as a func-

tion of ∆Γ
Γ

and measured value. The in-
sert shows an enlarged region

≈ 1
Γ

[
1 +

A − B

A + B

∆Γ

2Γ

+
(

1 + 4
AB

(A + B)2

)(
∆Γ

2Γ

)2
]

If a certain relative uncertainty of the amplitudes is
assumed, the relative uncertainty of ∆Γ

Γ is at least 5
times as large. If this uncertainty should not be greater
then 10 %, the amplitudes must be known at least to
2 % accuracy, which is very difficult.

Due to the problems stated above, we prefer to use
only lifetime measurements based on semileptonic decays.
The improvement in statistics by using all measurements
is very small anyway.

2 Numerical calculation

In a real measurement, the lifetime shift may depend on
the background or the detector resolution. Not all those
effects can be treated analytically, and so a numerical pro-
gram has been used to study them. This program com-
putes the log-likelihood-function by numerical integration,
including effects like resolution, cut offs and background.
The signal-function, representing the data, consist of two
exponentials, the fit-function only of one. The program
minimizes the log-likelihood for the only free parameter,
the B0

s -lifetime. The computed value is the (expected)
measured lifetime depending on ∆Γ or the background
size.

The difference between the theoretical formula and the
numerical calculation, as well as the systematic error of
the numerical calculation depend on the size of ∆Γ

Γ . Be-
cause of this, the difference and the errors are stated in
Table 1 seperately for different values of ∆Γ

Γ .

– Lifetime cuts: Because every detector has a finite
length, only events with smaller decay length are
recorded. Here a maximum decay length of 7 cm has
been choosen, while all detectors under consideration
have decay length larger then 10 cm . If the maximal
decay length is short, more long-lived events are cut

Table 1. All values are given in fs. The difference is
τtheoretical − τnumerical. ∗ Important: This error is not added.
See text below

Source of error ∆Γ
Γ

≤ 0.5 ∆Γ
Γ

≤ 1.0 ∆Γ
Γ

≤ 1.5
Lifetime cuts∗ 1 + 1 17 + 29 290 + 234
Resolution -2 ± 12 -8 ± 32 -16 ± 49
Background size -8 ± 3 -60 ± 17 -179 ± 38
Background fit 0 ± 20 0 ± 55 0 ± 213
Total difference ± error -11 ± 24 -52 ± 66 65 ± 222

off, and the fitted lifetime is shifted to a smaller value.
This leads to an overestimation of ∆Γ , which means
that this is the most conservative approach for giving
an upper limit on ∆Γ

Γ . Due to that, the error is not
added to the total systematic. It is stated here only
for completion.

– Resolution: The resolution was parametrized with two
Gaussians, similiar to the resolution functions used at
LEP. The two width were varied from 0 to 4 times of
the experimental values.

– Background size: Here only the size of the background
was varied, the values for the generating and the fit
function were the same. For the background, a model
taken from the LEP experiments was used, consisting
of a combinatorical background with positive, negative
and zero lifetime, and backgrounds for c- and other
b-decays. These parameters, which are very similiar
for all experiments, were varied by ±20 % around the
mean value to obtain the error.

– Background fit: Another bias is introduced, if the back-
ground assumed in the lifetime fit is differrent from
the real background. Since we only fit for τB0

s
, the er-

rors from the background uncertainty have to be intro-
duced artificially. This is done by using different values
for the background ratios in the fit- and in the signal-
function.
The error of these ratios is given by the experiments.
To check the result, we compared the lifetime error for
∆Γ
Γ = 0.0 with the systematic uncertainty on the life-

time due to the background ratios given by the exper-
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iments. Our error is 9 fs on τB0
s
, while the experiments

state 13 fs. To be consistent, the error was rescaled for
all values of ∆Γ

Γ .

The effect of the various parameters is surprisingly
small, at least for values of ∆Γ

Γ below 0.5. Therefore it
is possible to use the results from all experiments, even
without knowing all the parameter values in detail.

For the final result, the total systematic error is added
in quadrature to the error of the lifetime measurements.
The error for τB0

s
at ∆Γ

Γ = 0 is taken to be 13 fs.
If all measurements of the B0

s -lifetime using semilep-
tonic decays from ALEPH [2], CDF [3], DELPHI [4] and
OPAL [5] are combined, τB0

s
= (1445 ± 65) fs is obtained

using the averaging method of the LEP-blifetime group
[6].

The lifetime of B0
d is [8]: τB0

d
= (1570 ± 30) fs. There

is an additional error of 16 fs from the theoretical uncer-
tainty of the ratio of Γ and ΓB0

d
[1].

The result is shown in Fig. 1:
The errors for the τB0

d
and τB0

s
measurements (includ-

ing the theoretical error) were added in quadrature to the
systematic errors.

Obviously, there is no intersection point. The reason
is, that τB0

s
is lower than τB0

d
, while the prediction is the

other way round. In a naive interpretation, this means,
that a lifetime difference greater than 0 is excluded with
a CL of about 96 %. This CL is defined such that only 4
% or less of experiments would result in a B0

s lifetime as
observed or lower, if ∆Γ

Γ was larger than 0.
This might indicate a problem, either of the theoretical

prediction that Γ = ΓB0
d

to an accuracy of about 1% [1]
or the experimental data. The theoretical assumption has
been checked again, and so there is evidence to believe,
that there may be a problem in some of the experimental
results.

Ignoring these problems, an upper limit can be given
by using a new method [7], which is also recommended by
the PDG in such situations. The result is

∆Γ

Γ
≤ 0.10 68% CL

∆Γ

Γ
≤ 0.24 95% CL
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